The Equivalence Principle, the Covarianc

编号:68-36815 | DOC格式 | 152.50K | 42 页

本文共42页,可试读13

试读已结束,如需获得全文请点击下载

下载
已通过人工审核校对,完整可用,请放心下载 已加入诚信保障计划,若无法下载可先行赔付
豆知手机版上线啦
分享 收藏
立即下载

内容介绍

原文档由会员 快乐浪子 发布

The Equivalence Principle, the Covariance Principleand
the Question of Self-Consistency in General Relativity
内容丰富,建议下载阅览。

①页数 42

②字数 10884

③ 摘要
The equivalence principle, which states the local equivalence between acceleration and gravity, requires that a free falling observer must result in a co-moving local Minkowski space. On the other hand, covariance principle assumes any Gaussian system to be valid as a space-time coordinate system. Given the mathematical existence of the co-moving local Minkowski space along a time-like geodesic in a Lorentz manifold, a crucial question for a satisfaction of the equivalence principle is whether the geodesic represents a physical free fall. For instance, a geodesic of a non-constant metric is unphysical if the acceleration on a resting observer does not exist. This analysis is modeled after Einstein illustration of the equivalence principle with the calculation of light bending. To justify his calculation rigorously, it is necessary to derive the Maxwell-Newton Approximation with physical principles that lead to general relativity. It is shown, as expected, that the Galilean transformation is incompatible with the equivalence principle. Thus, general mathematical covariance must be restricted by physical requirements. Moreover, it is shown through an example that a Lorentz manifold may not necessarily be diffeomorphic to a physical space-time. Also observation supports that a spacetime coordinate system has meaning in physics. On the other hand, Pauli version leads to the incorrect speculation that in general relativity space-time coordinates have no physical meaning

④关键字 the Covariance Principl

⑥参考文献
1. D. Kramer, H. Stephani, E. Herlt, & M. MacCallum, Exact Solutions of Einstein Field Equations, ed. E. Schmutzer (Cambridge Univ. Press, Cambridge, 1980), pp 19-24.
2. A. Einstein, Analen der Physik, 49, 769-822 (1916); also (Leipzig, 1916); A. Einstein, H. A. Lorentz, H. Minkowski, H. Weyl, The Principle of Relativity (Dover, New York, 1952), p. 115, p. 118 & p. 162.
3. A. Einstein, The Meaning of Relativity (Princeton Univ. Press, 1954), pp. 63, 87, 90-93, & 129.
4. Y. Bruhat, he Cauchy Problem,' in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962).
5. W. B. Bonnor, J. B. Griffiths & M. A. H. MacCallum, Gen. Rel. & Gravitation, 26, 7, 1994.
6. C. Y. Lo, in Proc. Sixth Marcel Grossmann Meeting On General Relativity, 1991, ed. H. Sato & T. Nakamura, 1496 (World Sci., Singapore, 1992).
7. C. Y. Lo, Astrophys. J., 455: 421-428 (Dec. 20, 1995).
8. C. Y. Lo, Phys. Essays, 10 (3), 424-436 (Sept. 1997); ibid., Phys. Essays, 12 (2), 226-241 (June 1999).
9. C. Y. Lo, Phys. Essays, 11 (2), 264-272 (June 1998).
10. W. Pauli, Theory of Relativity (Pergamon, London, 1958), p. vi & p. 145.
11. A. S. Eddington, The Mathematical Theory of Relativity (Chelsa, New York, 1975), p. 10 & p. 129.
12. S. Weinberg, Gravitation and Cosmology (John Wiley Inc., New York, 1972), p. 3.
13. C. W. Misner, K. S. Thorne, & J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), p. 386 & p. 172.
14. P. G. Bergmann, Introduction to the Theory of Relativity (Dover, New York, 1976), p. 159.
15. Liu Liao, General Relativity (High Education Press, Shanghai, China, 1987), pp 13-16.
16. C. Y. Lo, Phys. Essays, 7 (4), 453-458 (Dec., 1994).
17. E. Kretschmann, Ann. Phys., Lpz., 53, 575 (1917).
18. S. W. Hawking, A Brief History of Time (Bantam, New York, 1988), pp 24, 50 & 143-152.
19. J. L. Synge, Relativity (North-Holland, Amsterdam, 1956), pp IX-X.
20. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1981).
21. R. M. Wald, General Relativity (The Univ. of Chicago Press, 1984), p. 438 & p. 441.
22. H. C. Ohanian & R. Ruffini, Gravitation and Spacetime (Norton, New York, 1994), p.xi, p.54, and back cover.
23. Yu Yun-qiang, An Introduction to General Relativity (Peking Univ. Press, Beijing, 1997).
24. V. A. Fock, Rev. Mod. Phys. 29, 345 (1957).
25. A. Gullstrand, Ark. Mat. Astr. Fys. 16, No. 8 (1921).
26. A. Gullstrand, Ark. Mat. Astr. Fys. 17, No. 3 (1922).
27. A. Einstein, elativity and the Problem of Space (1954)' in Ideas and Opinions (Crown, 1982).
28. A. Einstein, eometry and Experience (1921)' in Ideas and Opinions (Crown, New York, 1982).
29. A. Einstein, hat is the Theory of Relativity? (1919)' in Ideas and Opinions (Crown, New York, 1982).
30. J. Norton, hat was Einstein Principle of Equivalence?" in Einstein Studies Vol. 1: Einstein and the History of General Relativity, Eds. D. Howard & J. Stachel (Birkh酳ser, 1989).

扫扫二维码,随身浏览文档

手机浏览器 即可继续访问

推荐 UC浏览器 或 百度手机浏览器

手机阅读文档,一键扫码下载

获取二维码

微信公众号

手机 关注公众号

关注公众号,用微信扫描即可登录网站

获取二维码